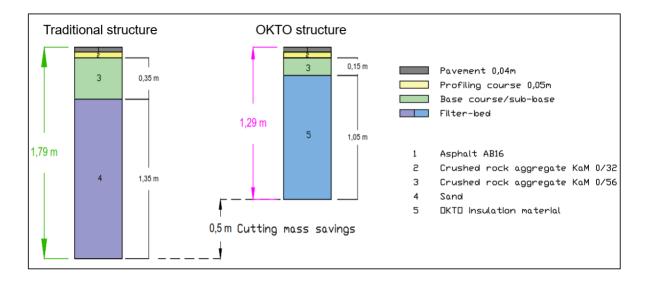


CARBON FOOTPRINT COMPARISON OF TRADITIONAL ROAD STRUCTURE VERSUS FERROCHROME SLAG (OKTO) STRUCTURE

Figure: In accordance with Google Maps

 Transportation distances and amounts of material

Material	Mass (t)	Distance (km)
OKTO	130 000	48
Sand	260 000	30
Crushed rock	38 000	8
Cutting mass	102 810	3


Calculation and reports: Sanna Torniainen, Destia

Case study - Background, goals and input data

• <u>The aim of the study</u>:

Comparison carbon footprint (CO2-ekvivalent) of traditional road structure (sand, crushed rock) and OKTO structure in an actual road construction case in Finland.

 Due to OKTO's better technical properties compared to traditional sand, e.g. load-bearing capacity and thermal insulating capacity, thinner road structures are possible.

- For OKTO, the emissions consist of:
 - granulation of ferrochrome slag
 - loading OKTO in Outokumpu's storage area
 - transporting OKTO to the construction site.
- For the traditional structure, the emissions consist of:
 - the work steps from deforestation to restoration that happened in sand and rock pits
 - for cutting masses excavation, loading and disposal.
 - The largest amount of emissions from traditional structure are formed in these production process.
 - Transport journeys to or from the construction site for sand, crushed stone and cutting mass have also been taken into account.

Case study – Results

 CO2e emissions of traditional and OKTO structures divided into production process emissions and transportation emissions:

	Traditional structure*	OKTO structure*
SAND, total (t CO2e) CO2e emissions, production process (t CO2e) CO2e emissions, transportation (t CO2e)	901,88 603,20 298,68	
CRUSHED ROCK, total (t CO2e) CO2e emissions, production process (t CO2e) CO2e emissions, transportation (t CO2e)	102,14 90,5 11,64	
CUTTING MASS, total (t CO2e) CO2e emissions, production process (t CO2e) CO2e emissions, transportation (t CO2e)	73,06 56,54 16,52	
OKTO, total (t CO2e) CO2e emissions, production process (t CO2e) CO2e emissions, transportation (t CO2e)		412,74 158,0 254,74
CO2e emissions, total (t CO2e)	1 077,1	412,7

*Calculation is made based on CO2e emissions from differences between structures when OKTO replaces traditional materials.

Case study – Discussion and conclusion

- The location of the construction site and thus the length of the transportation distance has a significant effect to the CO2e emissions of the OKTO structure.
- By utilizing OKTO construction products in infrastructure construction:
 - natural resources are saved as land acquisition and deforestation decrease
 - the working time of machines on sand and rock pits and on construction sites will decrease
- Due to the thinner road structures, the amount of cutting mass generated is reduced by the project (structure in the cut), which means:
 - less working time for the machines
 - less transportation
 - the smaller size of the disposal area

Figure source: Report: Current state of soil extraction and need for rehabilitation in groundwater areas (ELY-center for Southwest Finland)

Figure source: OKTO® construction product design and construction instructions in road, street and land structures

